# Chapter 3 Groundwater Management Planning and Implementation

The 1990s were a very important decade in the history of groundwater management in California. In 1992, the State Legislature provided an opportunity for more formal groundwater management with the passage of AB 3030 (Water Code § 10750 et seq.). More than 200 agencies have adopted an AB 3030 groundwater management plan. Additionally, 24 of the 27 counties with ordinances related to groundwater management adopted those laws during the 1990s. Plans prepared under AB 3030 certainly brought unprecedented numbers of water agencies into the groundwater management arena, and counties are now heavily involved in groundwater management, primarily through ordinances. However, many plans prepared under AB 3030 have had little or no implementation, and many counties focus primarily on limiting exports rather than on a comprehensive management program. As a result, the California Budget Act of 1999 (Stats. 1999, ch. 50), which authorized this update to Bulletin 118, directed the California Department of Water Resources (DWR) to complete several tasks, including developing criteria for evaluating groundwater management plans and developing a model groundwater management ordinance. This chapter presents the results of these directives. The intent is to provide a framework that will assist local agencies in proactively planning and implementing effective groundwater management programs.

# Criteria for Evaluating Groundwater Management Plans—Required and Recommended Components

In 2002, the Legislature passed SB 1938 (Stats 2002, ch 603), which amended Water Code section 10750 et seq to require that groundwater management plans adopted by local agencies include certain components to be eligible for public funds administered by DWR for construction of groundwater projects; the statute applies to funds authorized or appropriated after September 1, 2002. In addition to the required components, DWR worked with representatives from local water agencies to develop a list of additional recommended components that are common to effective groundwater management.

Both the "required" and the "recommended" components are tools that local agencies can use either to institute a groundwater management plan for the first time or to update existing groundwater management plans. These components are discussed below and listed in Appendix C, which can be used as a checklist by local agencies to assess whether their groundwater management plans are addressing these issues.

# **Required Components of Local Groundwater Management Plans**

As of January 1, 2003, amendments to Water Code Section 10750 et seq., resulting from the passage of SB 1938, require new groundwater management plans prepared under section 10750, commonly referred to as AB 3030 plans, to include the first component listed below.

Groundwater management plans prepared under any statutory authority must include components 2 through 7 to be eligible for the award of public funds administered by DWR for the construction of groundwater projects or groundwater quality projects. These requirements apply to funds authorized or appropriated after September 1, 2002. Funds appropriated under Water Code section 10795 et seq. (AB 303 – Local Groundwater Assistance Fund) are specifically excluded.

1) Documentation that a written statement was provided to the public "describing the manner in which interested parties may participate in developing the groundwater management plan" (Water Code, § 10753.4 (b)).

- Basin management objectives (BMOs) for the groundwater basin that is subject to the plan (Water Code, § 10753.7 (a)(1)).
- Components relating to the monitoring and management of groundwater levels, groundwater quality, inelastic land surface subsidence, and changes in surface flow and surface water quality that directly affect groundwater levels or quality or are caused by groundwater pumping (Water Code, § 10753.7 (a)(1)).
- A plan by the managing entity to "involve other agencies that enables the local agency to work cooperatively with other public entities whose service area or boundary overlies the groundwater basin" (Water Code, § 10753.7 (a)(2)). A local agency includes "any local public agency that provides water service to all or a portion of its service area" (Water Code, § 10752 (g)).
- Adoption of monitoring protocols (Water Code, § 10753.7 (a)(4)) for the components in Water Code 5) section 10753.7 (a)(1). Monitoring protocols are not defined in the Water Code, but the section is interpreted to mean developing a monitoring program capable of tracking changes in conditions for the purpose of meeting BMOs.
- A map showing the area of the groundwater basin as defined by DWR Bulletin 118 with the area of the local agency subject to the plan as well as the boundaries of other local agencies that overlie the basin in which the agency is developing a groundwater management plan (Water Code, § 10753.7 (a)(3)).
- For local agencies not overlying groundwater basins, plans shall be prepared including the above listed components and using geologic and hydrologic principles appropriate to those areas (Water Code, § 10753.7 (a)(5)).

#### Recommended Components of Groundwater Management Plans

Although the seven components listed above are required only under certain conditions, they should always be considered for inclusion in any groundwater management planning process. In addition to the required components of a groundwater management plan resulting from the passage of SB 1938, it is recommended that the components listed below be included in any groundwater management plan adopted and implemented by a local managing entity. These additional components were developed in accord with the Budget Act of 1999 and with the assistance of stakeholder groups. The components should be considered and developed for specific application within the basin, subbasin, or agency service area covered by the plan. Additional components will likely be needed in specific areas. The level of detail for each component will vary from agency to agency. None of the suggested data reporting in the components should be construed to require disclosure of information that is confidential under State law. Local agencies should consider both the benefits of public dissemination of information and water supply security in developing reporting requirements.

#### Manage with the Guidance of an Advisory Committee

The managing entity should establish an advisory committee of interested parties that will help guide the development and implementation of the plan. The committee can benefit management in several ways. First, the committee can bring a variety of perspectives to the management team. As the intent of local groundwater management is to maintain and expand local benefits from the availability of the resource, it makes sense that the intended beneficiaries are a part of the management process. Second, the committee is free to focus on the specifics of groundwater management without being distracted by the many operational activities that the managing entity (such as a water district) must complete. Third, some parties could be negatively impacted by certain groundwater management decisions, and these actions and potential adverse impacts should be a part of the decision-making process to help reduce future conflicts. Finally, the advisory committee helps the managing entity gain the confidence of the local constituency by providing the opportunity for interested parties to participate in the management process.

Many managing entities have already elected to use advisory committees for implementation of their groundwater management plans. The composition of these committees varies widely. Some groups consist entirely of stakeholders, others add local or State government representatives or academic members as impartial third parties, and some have included consultants as technical advisers. Some plans use multiple advisory committees to manage unique subareas. Some plans appoint advisory committees with different objectives, such as one that deals with technical issues and another that deals with policy issues. There is no formula for the composition of an advisory committee because it should ultimately be based on local management needs and should include representation of diverse local interests.

The Tulare Lake Bed Coordinated Management Plan provides an example of the benefit of an advisory committee. The plan includes nine groups of participants, making coordination and communication a complicated issue. To allow for greater communication, an executive committee was established consisting of one voting member from each public agency participating in the plan and one voting member representing a combined group of private landowner plan participants. The committee administers groundwater management activities and programs for the plan (TLBWSD 2002).

#### Describe the Area to Be Managed under the Plan

The plan should include a description of the physical setting and characteristics of the aquifer system underlying the plan area in the context of the overall basin. The summary should also include a description of historical data, including data related to groundwater levels, groundwater quality, subsidence, and groundwater-surface water interaction; known issues of concern with respect to the above data; and a general discussion of historical and projected water demands and supplies. All of these data are critical to effective groundwater management because they demonstrate the current understanding of the system to be managed and serve as a point of departure for monitoring activities as part of plan implementation.

## Create a Link Between Management Objectives and Goals and Actions of the Plan

The major goal of any groundwater management plan is to maintain a reliable supply of groundwater for long-term beneficial uses of groundwater in the area covered by the plan. The plan should clearly describe how each of the adopted management objectives helps attain that goal. Further, the plan should clearly describe how current and planned actions by the managing entity help meet the adopted management objectives. The plan will have a greater chance of success by developing an understanding of the relationship between each action, management objectives, and the goal of the groundwater management plan.

For example, prevention of contamination of groundwater from the land surface is a management objective that clearly supports the goal of groundwater sustainability. Management actions that could help support this objective include (1) educating the public through outreach programs that explain how activities at the surface ultimately impact groundwater, (2) developing wellhead protection programs or re-evaluating existing programs, (3) working with the local responsible agency to ensure that permitted wells are constructed, abandoned, and destroyed according to State well standards, (4) investigating whether local conditions necessitate higher standards than those adopted by the local permitting agency for the construction, abandonment, or destruction of wells, and (5) working with businesses engaged in practices that might impact groundwater to reduce the risks of contamination.

The concept of having a management objective is certainly not new. While many existing plans do not clearly include management objectives nor specifically identify actions to achieve objectives, some plans indirectly include these components. As an example, Eastern Municipal Water District's (EMWD) Groundwater Management Plan states that its goal includes maximizing "the use of groundwater for all beneficial uses in such a way as to lower the cost of water supply and to improve the reliability of the total

water supply for all users." To achieve this goal, EMWD has listed several issues to be addressed. One is the prevention of long-term depletion of groundwater. This can be defined as a management objective even though it is not labeled as such. Where this management objective is currently unmet in the North San Jacinto watershed portion of the plan area, EMWD has identified specific actions to achieve that objective including the reduction of groundwater extraction coupled with pursuing the construction of a pipeline to act as an alternative source of surface water for the impacted area (EMWD 2002).

#### Describe the Plan Monitoring Program

The groundwater management plan should include a map indicating the locations of any applicable monitoring sites for groundwater levels, groundwater quality, subsidence, stream gaging, and other applicable monitoring. The groundwater management plan should summarize the type of monitoring (for example, groundwater level, groundwater quality, subsidence, streamflow, precipitation, evaporation, tidal influence), type of measurements, and the frequency of monitoring for each location. Site specific monitoring information should be included in each groundwater management plan. The plan should include the well depth, screened interval(s) and aquifer zone(s) monitored and the type of well (public, irrigation, domestic, industrial, monitoring). These components will serve as a tool for the local managing entity to assess the adequacy of the existing monitoring network in tracking the progress of plan activities.

The groundwater management plan developed for the Scotts Valley Water District (SVWD) provides a detailed description of the monitoring program in Santa Cruz County (Todd Engineers 1994) Table 6 is SVWD's monitoring table, which serves as an example of the level of detail that is useful in a plan (Todd Engineers 2003a). Figure 9 shows the locations and types of monitoring points for each monitoring site. The monitoring table specifies in detail the data available and the planned monitoring. These serve as useful tools for SVWD to visualize the types and distribution of data available for their groundwater management activities. In addition to the minimum types of monitoring, SVWD summarizes other types of data that are relevant to their groundwater management effort.

#### Describe Integrated Water Management Planning Efforts

Water law in California treats groundwater and surface water as two separate resources with the result that they have largely been managed separately. Such management does not represent hydrologic reality. Recently, managers of a number of resources are becoming increasingly aware of how their planning activities could impact or be impacted by the groundwater system. Because of this, the local managing entity should describe any current or planned actions to coordinate with other land use, zoning, or water management planning entities.

Integrated management is addressed in existing groundwater management plans in several ways, including conjunctively managing groundwater with surface water supplies, recharging water from municipal sewage treatment plants, and working with local planning agencies to provide comments when a project is proposed that could impact the groundwater system.

Examples of planning efforts that should be integrated with groundwater management may include watershed management, protection of recharge areas, agricultural water management, urban water management, flood management, drinking water source assessment and protection, public water system emergency and disaster response, general plans, urban development, agricultural land preservation, and environmental habitat protection or restoration. Another example that may appear insignificant is transportation infrastructure. However, local impacts on smaller aquifers could be significant when landscaping of medians and interchanges requires groundwater pumping for irrigation or when paved areas are constructed over highly permeable sediments that act as recharge zones for the underlying aquifer.

| Monitoring type    | Location                                                                                                                | Measurement type                                                                       | Date<br>started | Frequency/ maintainer                                                                                                                | Notes                                                                                                                           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Precipitation      | El Pueblo Yard                                                                                                          | 15-minute recording                                                                    | Feb-85          | Daily/District, Monthly/City                                                                                                         | Other historic gages:(1) Blair site on Granite                                                                                  |
|                    | WWTP                                                                                                                    | 5-minute recording                                                                     | 1990            | Daily/City                                                                                                                           | Ck. Rd. (Jan. 1975 - Dec. 1980) (2) Hacienda Dr. (Jul. 1974 - Mar. 1979) (3) El Pueblo Yard bucket gage (Jan. 1981 - Jan. 1985) |
| Evaporation        | El Pueblo Yard                                                                                                          | Pan                                                                                    | Jan-86          | Daily/District                                                                                                                       | Evaporation pan raw data not compiled after<br>July 1990                                                                        |
| Evapotranspiration | De Laveaga Park, Santa Cruz                                                                                             | Automated active<br>weather station                                                    | Sep-90          | California Irrigation<br>Management Information<br>System/Monthly                                                                    | Data available on-line through CIMIS                                                                                            |
| Streamflow         | Carbonera Ck at Scotts Valley<br>@ Cabonera Way Bridge<br>(#111613000)                                                  | 15-minute recording                                                                    | Jan-85          | USGS/ Daily                                                                                                                          | Other historic gages: (1) Carbonera Ck @ Santa Cruz (#11161400) 150 feet upstream from mouth (1974-1976 partial data)           |
|                    | Bean Ck near Scotts Valley @<br>Hermon Crossing (#11160430)                                                             | 15-minute recording                                                                    | Dec-88          | USGS/ Daily                                                                                                                          | (2) Bean Ck near Felton (#11160320) (1973-1978 partial data), low flows at same location (1983-1988)                            |
|                    | Eagle Creek In Henry Cowell<br>Redwoods State Park                                                                      | Bucket-Fall, Flow<br>Meter-Spring                                                      | Mar-01          | Semi-annually/ Todd Engineers                                                                                                        | (3) Carbonera Creek @ Glen Canyon<br>(1990-1994?)                                                                               |
| Well Inventory     | T10S/R01E Sections 6-9,<br>16-20, 30 and<br>T10S/R02E Sections 1,11-14,<br>23-26, 36                                    | Over 400 wells: location, log, type, capacity, etc. stored in GIS, and Access database | 1950s           | Logs from DWR maintained by<br>Todd Engineers                                                                                        |                                                                                                                                 |
| Groundwater Levels | ~34 Santa Magarita aquifer and<br>~14 Lompico formation wells                                                           | Depth to water                                                                         | 1968            | Quarterly/ District and cooperators                                                                                                  | Data from over 75 wells, as early as 1968,<br>bi-monthly 1983-1989                                                              |
| Pumpage            | T10S/R01E Sections 6-9, 16-20, 30 and T10S/R02E Sections 1,11-14, 23-26, 36 District wells in production and on standby | Metered                                                                                | 1975            | Monthly/ Scotts Valley Water<br>District, Mt. Hermon<br>Association, Hanson Aggregates<br>West, San Lorenzo Valley<br>Water District | Other historic pumpage data: Manana Woods<br>(1988-1996 partial data)                                                           |

Table 6 Scotts Valley Water District's Groundwater Monitoring Plan (continued)

|      | 3.8                   | s, as early as 1963,<br>imilar to<br>ram                                                                |                                                   |                                                                      | \$ <b>\$</b>                                            |                                |
|------|-----------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------|
|      | Notes                 | Data from over 80 wells, as early as 1963 monitoring frequency similar to groundwater level program     |                                                   |                                                                      | Plant operational in 1965<br>(septic systems pre-1965)  |                                |
|      | Frequency/ maintainer | At least semi-annual/ District<br>and others                                                            | Semi-annually/ Todd Engineers                     | Semi-annually/ Todd Engineers                                        | Daily/City of Scotts Valley                             | At least quarterly/ WWTP       |
| Date | started               | 1963                                                                                                    | Mar-01                                            | Mar-01                                                               | 1965                                                    | 2002                           |
|      | Measurement type      | Title 22<br>constituents                                                                                | Metals, nitrogen<br>species, general<br>minerals  | Grab samples -<br>metals, nitrogen<br>species, general<br>minerals   | Wastewater<br>outflow volume<br>and effluent<br>quality | Recycled water<br>quantity and |
|      | Location              | T10S/R01E Sections 6-9, 16-20, 30 and T10S/R02E Sections 1,11-14,23-26, 36 District wells in production | North Scotts Valley 3 shallow<br>monitoring wells | Surface Water Quality 4 sites on Carbonera and 3 sites on Bean Creek | City of Scotts Valley WWTP<br>@ Lundy Lane              | Scotts Valley WWTP             |
|      | Monitoring type       | Groundwater Quality                                                                                     |                                                   | Surface Water Quality                                                | Wastewater Outflows                                     | Recycled Water<br>Production   |

Source: Todd Engineering 2003a

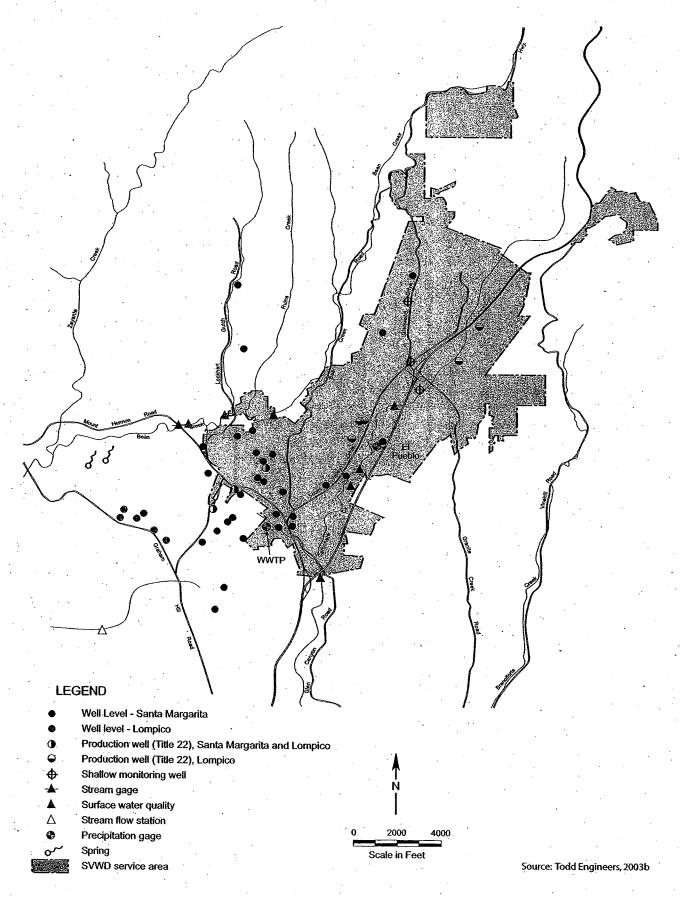



Figure 9 Scotts Valley Water District's Groundwater Management Plan monitoring locations

#### Box K What are Management Objectives?

Management objectives are the local managing entity's way of identifying the most important issues in meeting local resource needs; they can be seen as establishing a "walue system" for the plan area. There is no fixed set of management objectives for any given plan area. Some of the more commonly recognized management objectives include the monitoring and managing of groundwater levels, groundwater guality, inclastic land subsidence, and changes in streamflow and surface water quality where they impact or are impacted by groundwater pumping. Management objectives may range from being entirely qualitative to strictly quantified.

Each management objective would have a locally determined threshold value associated with it which can vary greatly: For example, in establishing a management objective for groundwater quality, one area may simply choose to establish an average value of total dissolved solids as the indicator of whether a management objective is met, while another agency may choose to have no constituents exceeding the maximum contaminant level for public drinking water standards. While there is great latitude in establishing management objectives, local managers should remember that the objectives should serve to support the goal of a sustainable supply for the beneficial use of the water in their particular area.

An example of an alternative management objective is Orange County Water District's (OCWD) objective of maintaining available storage space in its management area at 200,000 acresteet. The objective does not require that groundwater elevations be fixed at any particular location, although managing to this objective would likely have the net benefit of stabilizing water levels Groundwater storage is a dynamic value, so attempting to meet this management objective is an ongoing challenge. OCWD has implemented many management actions directly aimed at managing the basin to meet this objective.

The Deer Creek and Tule River Authority provides an excellent example of how groundwater management activities can be coordinated with other resources. The authority, in conjunction with the U.S. Bureau of Reclamation, has constructed more than 200 acres of recharge basins as part of its Deer Creek Recharge-Wildlife Enhancement Project. When available, the project takes surplus water during winter months and delivers it to the basins, which serve as winter habitat for migrating waterfowl, creating a significant environmental benefit. Most of the water also recharges into the underlying aquifer, thereby benefiting the local groundwater system.

# Report on Implementation of the Plan

The managing entity should produce periodic reports—annually or at other frequencies determined by the local managing entity—summarizing groundwater basin conditions and groundwater management activities. For the period since the previous update, the reports should include:

- · A summary of monitoring results, including historical trends,
- A summary of actual management actions,
- · A summary, supported by monitoring results, of whether management actions are achieving progress in meeting management objectives,
- A summary of proposed management actions, and
- A summary of any plan component changes, including addition or modification of management objectives.

Unfortunately, many plans were prepared in the mid-1990s with little or no follow-up documentation of whether the plan is actually being implemented. This makes it difficult to determine what progress has been achieved in managing the groundwater resource. Periodic reports will serve as a tool for the managing entity to organize its many activities to implement the plan, act as a driving force for plan implementation, and help interested parties understand the progress made by local entities in managing their groundwater resource.

Progress reports on SVWD (Todd Engineers 2002) and EMWD (2002) groundwater management plans serve as excellent examples of the value of such an exercise. Both reports effectively portray the results of management actions: progress toward achieving objectives and specific recommendations for future management actions. An example of reporting on the modification of a management objective for water quality can be found in EMWD's 2000 Annual Report (EMWD 2001). A task force of more than 20 water suppliers and wastewater agencies, including EMWD, worked to update the Regional Water Quality Control Board's Region 5 Basin Plan objectives for nitrogen and total dissolved solids in water, effectively changing EMWD's management objectives for those constituents.

#### Evaluate the Plan Periodically

The managing entity and advisory committee should re-evaluate the entire plan. Periodic evaluation of the entire management plan is essential to define successes and failures under the plan and identify changes that may be needed. Additionally, re-evaluation of the plan should include assessment of changing conditions in the basin that may warrant modification of the plan or management objectives. Adjustment of components in the plan should occur on an ongoing basis if necessary. The re-evaluation of the plan should focus on determining whether the actions under the plan are meeting the management objectives and whether the management objectives are meeting the goal of sustaining the resource.

While there are several examples of existing groundwater management plans that demonstrate ongoing changes to plan activities, there are no known examples of such an approach to entirely re-evaluate an existing plan. This is likely due in part to the occurrence of several consecutive wet years in the mid- and late-1990s. The abundant surface water supplies reduced the need to actively manage groundwater supplies in many cases. More recent dry conditions and the recent passage of SB 1938 will create an excellent opportunity for managing entities to begin a re-evaluation of existing plans.

## Model Groundwater Management Ordinance -

As discussed in the previous chapter, ordinances are groundwater management mechanisms enacted by local governments through exercise of their police powers to protect the health and safety of their citizens. In Baldwin v. Tehama County (1994), the appellate court declared that State law does not preempt the field of groundwater management.

In the mid- to late-1990s, many counties adopted ordinances that effectively prevented export of groundwater from the county, even though none specifically prohibited export. The intent of each of these ordinances is to sustain groundwater as a viable local resource. To ensure that goal, an export project proponent is required by most of the ordinances to show that the proposed project will not cause depletion of the groundwater, degradation of groundwater quality, or subsidence before a permit to export groundwater can be issued. Although these ordinances do not specifically require threshold limits for each of these potential negative impacts, a project proponent can really only show that these negative effects will not occur if the proponent develops a groundwater management plan.

Many of these ordinances were developed in response to the plans of some agencies or landowners to export groundwater or develop a groundwater substitution project where surface water is exported and groundwater is substituted for local use. In some cases, short-term export actually took place, leading to a number of claims of negative third party impacts. Residents of some counties became concerned because no one knew how much groundwater was available for local use and how much groundwater was available for export. In short, details of the hydrology of the basin, including surface water and groundwater availability, water quality, and the interaction of surface water and groundwater were not known. This lack of detailed knowledge about the operating potential of their groundwater resources led counties to take what they viewed as protective action, which consisted of requiring a permit before anyone could export groundwater from the county.

From the perspective of DWR, groundwater should be managed in a manner that ensures long-term sustainability of the resource for beneficial uses. Those beneficial uses are to be decided by the local stakeholders within the basin. In some areas, there may be an ample supply of water, so groundwater exports or substitution projects are feasible while local beneficial uses of the water supply are maintained. In other areas, limiting exports may be necessary to maintain local beneficial uses. Such determinations can be made only after the data are collected and evaluated and the results are used to develop management objectives for the basin.

While developing both the criteria for evaluating groundwater management plans and the model groundwater management ordinance, DWR staff has borne two principles in mind. First, the goal of groundwater management, whether accomplished by a plan or by an ordinance, is to sustain and often expand a groundwater resource. Second, groundwater management, whether accomplished by a plan or by an ordinance, requires that local agencies address and resolve the same or similar issues within the boundaries of the agencies. To say it in different words, whether it is a plan or an ordinance, good groundwater management should address the same issues and problems and arrive at the same conclusions and solutions to satisfy the needs of the local area. While some areas may allow or promote exports, others may not

As stated above, the Legislature required a model ordinance as one of the elements of this update of Bulletin 118. The model ordinance is included as Appendix D and can be used by local governments that have identified a need to adopt a groundwater management ordinance. The model is an example of what a local ordinance might include. Local conditions will require some additions, modifications, or deletions. The variety of political, institutional, legal, technical, and economic opportunities and constraints throughout California guarantees that there will be differences to which the model will have to be adapted. Local governments interested in adopting a groundwater management ordinance are encouraged to consider all components included in the model.

Water Code section 10753.7(b)(1)(A) allows an agency to participate in or consent to be subject to a groundwater management plan, a basin-wide management plan, or other integrated regional water management plan in order to meet the funding eligibility requirements that resulted from passage of SB 1938 (2001). A local government that adopts an ordinance should consider whether or not it will have local agencies that do not have their own groundwater management plan, but consent to be managed under the ordinance. If this situation is anticipated, the ordinance should include the required components described in the Water Code so State funding can be pursued.