Standard Checklist

Name	of Ri	pariar	n-Wetland Area: Hitchcock Creek	
Date: May 26, 2004			Segment/Reach ID: Reach 7, at Bridge 512 PFC 307	
Miles: Elevation: 276			vation: 276 GPS: N36, 28 263 W121, 43 466	
ID Te	am O	bserve	ers: Clive Sanders, Danica Zupic Time:	
Yes	No	N/A	HYDROLOGY	
X			Floodplain above bankfull is inundated in "relatively frequent" events	
		X	Where beaver dams are present they are active and stable	
X			 Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting (i.e., landform, geology, and bioclimatic region) 	
X			4) Riparian-wetland area is widening or has achieved potential extent	
	X		5) Upland watershed is not contributing to riparian-wetland degradation	
Yes	No	N/A	VEGETATION	
	X		There is diverse age-class distribution of riparian-wetland vegetation (recruitment for maintenance/recovery)	
	X		There is diverse composition of riparian-wetland vegetation (for maintenance/recovery)	
X			Species present indicate maintenance of riparian-wetland soil moisture characteristics	
	X		9) Streambank Vegetation is comprised of those plants or plant communities that have root masses capable of withstanding high-streamflow events	
X			10) Riparian-wetland plants exhibit high vigor	
	X		Adequate riparian-wetland vegetative cover is present to protect banks and dissipate energy during high flows	
\times			12) Plant communities are an adequate source of coarse and/or large woody material (for maintenance/recovery)	
Yes	No	N/A	EROSION/DEPOSITION	
	X		13) Floodplain and channel characteristics (i.e., rocks, overflow channels, coarse and/or large woody material) are adequate to dissipate energy	
X			14) Point bars are revegetating with riparian-wetland vegetation	
X			15) Lateral stream movement is associated with natural sinuosity	
X			16) System is vertically stable	
	X		17) Stream is in balance with the water and sediment being supplied by the watershed (i.e., no excessive erosion or deposition)	

Summary Determination

runctional Nating.					
Proper Functioning Condition Functional—At Risk Nonfunctional Unknown	X				
Trend for Functional—At Risk:					
Upward Downward Not Apparent					
Are factors contributing to unacceptable conditions outside the control of the manager?					
Yes No					
If yes, what are those factors?					
Flow regulations Mining act Channelization Road encre Augmented flows Other (spec	oachment Oil field water discharge				

Picture 1

Picture 2

Remarks

This reach lacks vegetation to properly stabilize the banks and dissipate flow energies. A great deal of concrete armoring has been done to stabilize the banks and hillsides (See Picture 1 and 2).

Downstream from bridge 512 is a house with a large lawn lacking strong rooted trees, and an hillside that is only temporarily stabilized with Vinca major. Throughout the reach there are a few different types of trees, however they are not abundant.

Sandbags are stabilizing a twenty foot long reach of the bank.

The downstream left bank is severely eroded under a rotting deck and bridge.

At the base of Bridge 513 is a huge sediment deposit. A hole that was 6 ft. deep at one time is now entirely filled (See Picture 2)

Bridge 513 is undercut and is a fish migration impediment.

Two rows of stones have been constructed under the bridge possibly to retain water.

Checklist Comments

- #5, 17 There is an excess sediment that has filled a 6 ft. hole and there is an excess of sediment throughout the creek.
- #6,7, The vegetation is not diverse in its age-class distribution or composition.
- #9, 11 There is not enough vegetation or strongly rooted plants to withstand or dissipate high flow energies.
- #13 The armored banks do not dissipate flow energies and the channel lacks rocks, and LWD to dissipate energies.
- #16 The system is vertically stable for now, however the sandbags and bridge will not withstand a high flow, causing their banks to become extremely unstable.